Carbon Conservation & Energy Efficiency


Bruce Rowse & Team

Archive for the ‘Electricity distribution’ Category

Canberra to be Better Place’s first city for electric vehicle recharge network

Saturday, July 25th, 2009

Yesterday Better Place announced that Canberra would be the first site in the national rollout of its electric vehicle recharge network.

Construction of the network will begin in 2011, with services available to electric vehicle owners from 2012.

ActewAGL – the electricity distribution business and retailer in the ACT – responsible for sourcing and distributing the renewable energy that Better Place will use to power electric vehicles within the ACT. “A significant influence on our decision to choose Canberra was the enthusiasm and support we have received from Michael Costello and his team at ActewAGL” said Evan Thornley, Chief Executive Officer of Better Place Australia.

The deployment of the network will include:

  • Recyclable lithium-ion batteries that will power the electric vehicles and be provided as part of the service to drivers, reducing the up-front costs of purchasing an electric vehicle;
  • Charge spots in homes, offices, shopping centres and other car parks where drivers can plug in to keep their battery fully charged; and
  • “Battery Swap Stations” where motorists can drive in and have a depleted battery automatically exchanged for a fresh, fully charged one.

The vision of Shai Agassi, Better Place founder, is for electric vehicles to be cheaper and more convenient than fossil fuel powered cars. Australia is one of three countries where the technology is being rolled out globally. Its great to see this vision now being translated into concrete plans.

Imagineering a better place

Wednesday, July 22nd, 2009

Today I had the fortune to see Shai Agassi, founder of Better Place, talk about his vision for the electric car future. Shai calls himself an imaginer – “I imagine the future and engineer towards it”. His vision of an electric car future is elegant, simple, and achievable. Australia is a key part of his strategy to get the world to a tipping point which results in all cars becoming electric.

For electric cars to replace petrol cars they must be cheaper and more convenient. Yet the electric cars available now are more expensive and less convenient because of their short range and limited recharging options.

One of the keys to Shai’s vision is treating the battery – the single most expensive component in an electric vehicle – like gasoline. The battery becomes a consumable, not owned by the car owner. By taking out the battery its possible to make vehicles that are price competitive with gasoline vehicles.

A second key is the electricity grid, which is everywhere, and which he called “the longest extension lead in the world”. By extending the grid to having recharging points where cars are parked, vehicles can be charged whenever they are not in use. Better Place will be buying only wind or solar generated electricity for use in its vehicles.

A third key, for longer trips, is batteries that can be swapped over in a minute. The first prototype has just been built in Japan. So on a long trip (over 200kms) you pull into a battery station, change your battery, then keep going. It will take less time to change your battery than to fill your car for petrol. For a typical suburban vehicle typically there would be around 12 to 15 battery changes per year.

Paying per km you travel – for the electricity and battery amortisation – is still cheaper than the equivalent cost of petrol per km.

The result is:

  • Cars that cost less to buy than fossil fuel powered vehicles; and
  • Cars that cost less to run than fossil fuel powered vehicles.

Of course a large investment is needed to build the infrastructure – the recharging points and battery change stations. But if cars are cheaper, if they cost less to run, if petrol is only going to keep increasing in price, and if there is going to be continued regulation and incentive to reduce carbon emissions this is not a insurmountable hurdle.

Shai believes that the “tipping point” will be reached once three countries have proven the concept. Then the rest of the world is likely to follow – and follow quickly. The first country is Israel, which first supported the idea. Renault are investing one billion dollars in producing a electric vehicle, which will first be sold in Israel; they are aiming to sell 150,000 vehicles in the next few years. The second country is Denmark. And the third country is Australia, with Looksmart founder and former Victorian parliamentarian Evan Thornley heading up Better Place in Australia.  Australia was chosen for a couple of reasons. First its big, unlike Israel and Denmark, and thus provides a demonstration that the technology is suited to big and small countries. Secondly we have large sprawling cities, involving a long suburb to city commute, not dissimilar to many North American cities. A third reason would be that we have a relatively small population of cars, so the net capital cost is relatively low. Shai also said that Australia has lots of Lithium, iron and phosphate, the components used in electric vehicle batteries.

With a country full of electric cars, each with large storage capacity, the intermittent nature of electricity generation from wind and solar can be overcome. When the wind blows and the sun shines batteries in parked cars everywhere will be charged. When its calm and cloudy cars can then feedback into the network. And we move towards the smart grid or distributed network.

The choice of Evan Thornley as Australian CEO is interesting. Clearly Better Place will need tremendous IT and communication infrastructure to communicate with vehicles and the smart grid and monitor battery condition and charge levels. Its hard to go past one of the people who was involved in driving widescale uptake of the internet as a leader.

This future is not that far away. Various governments around the world are now offering subsidies to those who purchase electric vehicles. And in Beijing gasoline cars will be progressively banned from the streets. By 2014 no fossil fuel powered vehicles will be allowed in Beijing.

Shai believes that within 10 years we could have three to four million drivers using electric vehicles in Australia.

Shai Agassi spoke at the inaugural 2009 Alfred Deakin eco-innovation lecture. These lectures will feature optimistic innovation driving a more sustainable world. Shai’s positive vision is a great inspiration and a fantastic way of kicking off the lectures.

Appliances for the smart grid

Wednesday, July 15th, 2009

General Electric is developing “smart” appliances that can integrate with “smart meters” and thus potentially schedule loads in a way that reduces maximum demand.

With time of use pricing in place, the GE system will use pricing information to schedule loads real time. So for example if a washing machine was running it might switch it off if the price of electricity increased, then switch it back on again when the price dropped.

GE have a dedicated website looking at the smart grid as part of its “eco-imagination” drive. If you have the patience for the flash animation to download its a superficial visual view of the smart grid and smart meters, but with little detail of the technology.

Otherwise Click here for a profile on the technology by Martin LeMonica at CNET 

How plummeting PV prices will greatly change the electricity distribution network

Tuesday, July 14th, 2009

I attended a workshop today in Melbourne run by iGrid, a consortium of universities and the CSIRO preparing a model of the intelligent energy grid of the future.

Its been identified that peak demand, which is rising faster than electricity consumption, is one of the most critical issues that a distributed generation network can address.

Dr. Muriel Watt, Chair of the Australian Photovoltaic Association and Project Manager with IT Power gave a presentation about the future pricing of PV, with  similar themes touched on by Michael Williamson from Sustainability Victoria.

Solar PV prices have historically decreased by roughly 20% for every doubling of global production. At current growth trends this means that the cost of PV generated electricity in Australia is likely to reach grid parity within the next five to ten years. “Grid parity” meaning that the cost of generating electricity from a PV system will be equal to the cost of buying electricity off the grid. This assumes some government support.

The $8,000 government rebate for a 1kW system has resulted in around 100,000 Australian households now having PV systems. As prices continue to lower it will become economic for business to also install PV.

As prices approach grid parity and take up of PV systems grows strongly we should see a significant reduction in greenhouse gas emissions. Most of these systems will be grid connect. Along with the uptake of other technologies, such as small scale co-generation, the electrical distribution grid will be transformed from one that provides for a one way flow of energy to one in which two way flows are experienced.

This in itself will generate other challenges, such as the need for energy storage in the grid. Several presenters discussed electric cars as a storage solution. Most cars are in use for less than two hours a day, and the rest of the day, if the appropriate infrastructure exists, could provide storage capacity to the electrical network.

There will need to be significant investment into the electricity distribution network to make it smart. Regulatory changes will be needed to facilitate this.

The upcoming “smart meter” rollout in Victoria, set to start over the next few months, is just one step in this direction. The distribution network itself needs to get smarter (so for example voltages can be adjusted), and the information collected by the smart meters should be made available to customers to result in a more effective demand side response, particularly if time of use pricing is introduced. There is opportunity for innovative new products to use this data to shift loads and influence consumer behaviour.