Carbon Conservation & Energy Efficiency

|

Bruce Rowse & Team

Posts Tagged ‘Energy efficiency’

The TV stations don’t. Fairfax doesn’t. News Corp doesn’t. The NY Times Does

Friday, February 18th, 2011

Across Australia power bills are going up and the climate is clearly changing. So you would think that our mainstream media would be  bringing us good news stories about how we can cut our power bills and reduce carbon emissions, with a fast payback on investment.

But no. The focus is doom and gloom.The reporting I see is about how reducing carbon emissions is expensive, about how programs to reduce carbon emissions push up prices.

Have you ever picked up The Australian, The Age, The Sydney Morning Herald, The Courier Mail, the Australian Financial Review or any of our major papers and seen a good news story about how much money someone has saved from energy efficiency? I haven’t.

Have you ever seen a TV program that shows how different businesses are saving money and reducing carbon emissions through energy efficiency? I haven’t (but I admit I hardly ever watch TV).

Want a bit of cheer from your mainstream media. Sorry, you have to go to other side of the world.  Such as to the NY Times.

Why aren’t we seeing a lot of article like this in Australia? Believe me, there are lots of good news stories from energy efficiency if you want to look. Check out the good news interviews on our website for some of them.

Energy efficiency – if you “get it” tell someone!

Tuesday, February 8th, 2011

Today’s Financial Review front page news was about the desperate need for more power stations in Australia. The article stated that according to the Australian Energy Market Operator electricity consumption is increasing at 2.5% per year, and we need between 700 and 900 MWh of extra generating capacity per year. And that to cope with increased demand and a carbon price, Australian power generators will have to invest up to $120 billion in new electricity assets over the next 20 years.

These comments, and the failure of the article to mention energy efficiency, clearly show that by and large most people just don’t “get” energy efficiency. Because if as a society we really got energy efficiency, we wouldn’t need any new power stations.

So if you “get” energy efficiency, tell someone. Let me give you some examples of what energy efficiency means:

  • A local government client has cut electricity consumption in its office complex by 32% (2010 vs 2006). The office complex contains three major buildings, two of which are over one hundred years old and subject to heritage constraints.
  • Local government electricity consumption

    Local government electricity consumption

  • One of our earliest clients, Westernport Secondary college, used 31% less electricity in 2010 than it did in 2004. Roughly same number of students. Maximum peak demand at the college has also dropped, by39%.
  • WPSC electricity consumption

    WPSC electricity consumption

  • The all-electric CarbonetiX office uses 35 kWh/m2/year – that’s everything – light, power, heating, cooling. Most comparable offices would use over 100 kWh/m2/year. We are certainly using much less than the previous tenant.

All these examples show what energy efficiency can do to reduce the demand for energy – and cut carbon emissions -whether a building be old or new, owned or leased. And the energy efficiency measures implemented at the local government office,  Westernport Secondary College and the CarbonetiX office haven’t been particularly complex or used leading edge technology. In fact some of the savings come not from technology, but from choice. Choosing to switch off, to only switch on when necessary, choosing to change the air conditioner temperature settings, choosing to be conscious of energy usage.

WPSC electricity demand

WPSC electricity demand - by time of day.

WPSC - maximum electrical demand by month

WPSC - maximum electrical demand by month

The example of Westernport Secondary College is particularly interesting. If every household and organisation that uses electricity could do what Westernport Secondary College has done we would need about 39% fewer power stations, not more.

I’m not the only one who “gets” it. New Scientist has recently reported on a study by Cambridge University which found that energy efficiency could cut world energy usage by over 70%.

Energy efficiency has multiple benefits:

  • It reduces carbon emissions
  • It saves money for the energy consumer
  • It reduces peak demand
  • It reduces upward pressure on electricity prices

So, if you “get” energy efficiency tell someone!

Raising the profile of energy efficiency

Wednesday, October 13th, 2010

Last week  I attended the All Energy conference in Melbourne. Running over 2 days, with over 30 conference sessions, just one was dedicated to energy efficiency.  Rob Murray Leach, head of the Energy Efficiency Council who chaired the session, kicked it off by saying that this was the most important session of the conference, as 65% of the world’s carbon reduction by 2020 to come from energy efficiency according to the International Energy Agency.

But is energy efficiency getting 65% of the press coverage, is it 65% of the conversation around 2020 carbon abatement targets? Clearly it isn’t.

There is a massive vacuum when it comes to awareness and understanding of the most cost effective way by far of reducing carbon emissions – energy efficiency. Have a conversation about reducing your carbon footprint, and the first thing to come up will be solar panels, not building controls.

Yet from an economic perspective energy efficiency is extraordinarily interesting in comparison with solar. At commercial electricity tariffs, without subsidies, even the cheapest solar PV system has a payback of over 25 years.

Cover the entire roof of a typical two or three storey office building with solar panels and you’ll reduce electricity usage at the site by around 15%, whilst spending about four times your annual electricity costs to buy the solar system. Yet energy efficiency could probably deliver that same 15% saving with a 2 to 3 year return on investment.

So why isn’t energy efficiency getting the attention it deserves?

As an industry we haven’t been effective in promoting energy efficiency. The recently formed Energy Efficiency Council, of which CarbonetiX is a member, is now taking up this challenge, but there is a long way to go.
Energy efficiency is not visible. The results of changes to the lights and the way the air conditioning is controlled are only visible to the person paying the much lower energy bills, and the person who championed the changes. Solar panels are visible to everyone.

The invisibility of energy efficiency is compounded by the fact that the good news stories aren’t told. They may not even be told to people in the building where the savings have been achieved, let alone to the wider public.
And energy efficiency, whilst it gets good savings, is not that easy to do, but there is a perception that it is easy. So organisations may undertake a DIY approach, with no training and no experience, and not achieve any noticeable savings. A classic DIY approach would be to spend $2,000 to get occupancy sensors fitted to control the lights in the toilets – I’m sorry but the savings from this simply won’t show up in your energy bills.

The problem arising from failed DIY efforts is that this then creates the perception that energy efficiency doesn’t work. And nothing could be further from the truth. Yes, energy efficiency does work, but you need to know what you are doing. Businesses don’t get the receptionist to do their tax return. A qualified, experienced accountant who  is normally contracted to do so. But when it comes to saving energy, all too often its assumed that an environmental officer or a facility maintenance officer can effectively do energy efficiency.

So, to raise the profile of energy efficiency, celebrate and promote the savings you achieve. Put up a plaque above reception showing how much you have saved, or a graph of how your energy use has gone down. Get a high NABERS rating and put the certificate in reception as well. Talk about what was done to use the savings. Get a case study done and circulate it amongst your staff. Then send the case study off to your local paper and get them to do a profile on what you have achieved.

And to get those savings, to make energy efficiency really work for you, get expert advice and guidance.

Forecast energy use in Australia to 2030 indicates that greenhouse gas emissions from fossil fuels will continue to increase.

Tuesday, April 27th, 2010

Last month ABARE, the Australian Bureau of Agriculture and Resource Economics released its Australian energy projections to 2029-30.

The blow dried picture of a wind turbine on the front page is unfortunately very misleading.

The projections take into account the likely effects of the Carbon Pollution Reduction Scheme (if it ever comes in), the Renewable Energy Target, and other measures designed to reduce Australia’s carbon footprint.

ABARE predicts that the amount of electricity generated in Australia will increase by nearly 50% on 2007-08 values, or a growth rate of 1.8 percent per year. That’s only just below our projected population growth rate of 2.1%.

Total energy consumption is projected to grow 35% (1.4% a year). Its expected that in 2029-30 coal and oil will still be supplying the bulk of Australia’s energy needs. Renewable energy is expected to supply just 8% of total energy in 2029-30.

Assuming that the emissions factors for coal, oil and natural gas are similar to what they are today (for example that 1 GJ of black coal still produces around 88.43 kg of GHG when combusted), a quick calculation shows that Australia’s greenhouse gas emissions from the use of fossil fuels are likely to be 21% higher in 2029-30 than they were in 2007-08.

The table below shows the maths, using the data in the ABARE report and emissions factors from the Department of Climate Change website.

Fossil fuel 2007-08 Consumption (PJ) 2029-30 Consumption (PJ) Emissions factor (kg CO2-e/GJ) 2007-08 GHG (Mt CO2-e) 2029-30 GHG (Mt CO2-e)
Blackcoal

1514

1311

88.43

134

116

Browncoal

610

452

93.11

57

42

Oil (assumed to be crude oil)

2083

2787

69.16

144

193

Gas (assumed to be unprocessed natural gas)

1240

2575

51.33

64

132

TOTAL       398 483

I find this data deeply disturbing – it appears as though emissions from fossil fuels will increase from 398 million tonnes to 483 million tonnes. Climate change scientists say we need to reduce emissions. Yet Australia’s emissions from the use of fossil fuels appear to be set to increase, with measures such as the CPRS appearing tokenistic.

Which begs the questions, if the CPRS is supposed to reduce emissions by 5% by 2020, how come my calculations show that our emissions from the use of fossil fuels will be higher in 2030? Or is it expected that the emissions factors will lower for coal (for example via “clean coal” technologies)? Or will the emissions reduction come from international carbon trading? As a developed country with one of the highest per capita emissions in the world is this really the best we can do?

Energy conservation (choosing to waste less energy) and energy efficiency (using less energy to achieve the same outcome) have the potential to decrease our energy use if widely uptaken. The climate change science demands a step change in our ability to save energy if we are to avoid ABARE’s disturbing projections.

The (possibly surprising) future of incandescent bulbs

Friday, August 21st, 2009

Most commercial buildings in Australia have moved away from incandescent bulbs to compact fluorescents, which are much more energy efficient and last longer. The limitations of CFLs are slow warm up time, early failure if frequently switched, and high cost for dimmable CFLs. Additionally some speciality bulbs, such as chandelier bulbs, don’t have readily available CFL equivalents. But as CFLs are four or five times more efficient than incandescent in our energy audits we always try to build a strong case for switching to CFLs.

But incandescent may be getting a second life. Australia enacted the first legislation banning  sales of low efficiency lamps (incandescent) and the US followed. With a much larger market than ours this has sparked some innovation in the design of incandescent lamps.

Philips now has a incandescent that is 30% more efficient than a standard incandescent. Osram is shortly coming out with one 25% more efficient.

These sort of efficiency gains still leave CFLs as clearly the superior option, but as there is more research undertaken the incandescent could get even better yet.

If incandescent efficiency can be improved by 20% a year, it will take six or seven years to catch up with where CFLs are now. Which is a long time, unless there is an innovation that provides a quantum improvement in efficiency.

LED lights on the other hand are now getting close to CFL efficiency.

Its great to see all this lighting innovation happening, and hopefully we will soon see screw in and plug in bulbs that are more efficient than CFLs